Logo
phone
Hotline: 02437327155
Xử lý nước thải bằng công nghệ sinh học
  13/05/2015
icon-zalo

Phương pháp xử lý nước thải bằng công nghệ sinh học được ứng dụng để xử lý các chất hữu cơ hoà tan có trong nước thải cũng như một số chất ô nhiễm vô cơ khác như H2S, sunfit, ammonia, nitơ… dựa trên cơ sở hoạt động của vi sinh vật để phân huỷ chất hữu cơ gây ô nhiễm. Vi sinh vật sử dụng chất hữu cơ và một số khoáng chất làm thức ăn để sinh trưởng và phát triển. Một cách tổng quát, phương pháp xử lý sinh học có thể chia làm 2 loại:

·    • Phương pháp kỵ khí sử dụng nhóm vi sinh vật kỵ khí, hoạt động trong điều kiện không có oxy;

·    • Phương pháp hiếu khí sử dụng nhóm vi sinh vật hiếu khí, hoạt động trong điều kiện cung cấp oxy liên tục. Quá trình phân huỷ các chất hữu cơ nhờ vi sinh vật gọi là quá trình oxy hoá sinh hoá.

Để thực hiện quá trình này, các chất hữu cơ hoà tan, cả chất keo và các chất phân tán nhỏ trong nước thải cần di chuyển vào bên trong tế bào vi sinh vật theo 3 giai đoạn chính như sau:

·    • Chuyển các chất ô nhiễm từ pha lỏng tới bề mặt tế bào vi sinh vật;

·    • Khuyếch tán từ bề mặt tế bào qua màng bán thấm do sự chênh lệch nồng độ bên trong và bên ngoài tế bào;

·    • Chuyển hoá các chất trong tế bào vi sinh vật, sản sinh năng lượng và tổng hợp tế bào mới.

Tốc độ quá trình oxy hoá sinh hoá phụ thuộc vào nồng độ chất hữu cơ, hàm lượng các tạp chất và mức độ ổn định của lưu lượng nước thải vào hệ thống xử lý. Ở mỗi điều kiện xử lý nhất định, các yếu tố chính ảnh hưởng đến tốc độ phản ứng sinh hoá là chế độ thuỷ động, hàm lượng oxy trong nước thải, nhiệt độ, pH, dinh dưỡng và nguyên tố vi lượng.

 

  1. Công nghệ sinh học hiếu khí

 

Quá trình xử lý sinh học hiếu khí nước thải gồm ba giai đoạn sau:

·    - Oxy hoá các chất hữu cơ: CxHyOz + O2 => CO2 + H2O + DH

·    - Tổng hợp tế bào mới: CxHyOz + NH3 + O2 => CO2 + H2O + DH

·    - Phân huỷ nội bào: C5H7NO2 + 5O2 => 5CO2 + 5 H2O + NH3 ± DH

Các quá trình xử lý sinh học bằng phương pháp hiếu khí có thể xảy ra ở điều kiện tự nhiên hoặc nhân tạo. Trong các công trình xử lý nhân tạo, người ta tạo điều hiện tối ưu cho quá trình oxy hoá sinh hoá nên quá trình xử lý có tốc độ và hiệu suất cao hơn rất nhiều. Tuỳ theo trạng thái tồn tại của vi sinh vật, quá trình xử lý sinh học hiếu khí nhân tạo có thể chia thành:

·     • Xử lý sinh học hiếu khí với vi sinh vật sinh trưởng dạng lơ lửng chủ yếu được sử dụng khử chất hữu cơ chứa carbon như quá trình bùn hoạt tính, hồ làm thoáng, bể phản ứng hoạt động gián đoạn, quá trình lên men phân huỷ hiếu khí. Trong số những quá trình này, quá trình bùn hoạt tính hiếu khí (Aerotank) là quá trình phổ biến nhất.

·    • Xử lý sinh học hiếu khí với vi sinh vật sinh trưởng dạng dính bám như quá trình bùn hoạt tính dính bám, bể lọc nhỏ giọt, bể lọc cao tải, đĩa sinh học, bể phản ứng nitrate hoá với màng cố định.

 

1.1 Công nghệ xử lý nước thải bùn hoạt tính hiếu khí (Aerotank)

 

Trong bể bùn hoạt tính hiếu khí với sinh vật sinh trưởng dạng lơ lửng, quá trình phân huỷ xảy ra khi nước thải tiếp xúc với bùn trong điều kiện sục khí liên tục. Việc sục khí nhằm đảm bảo các yêu cầu cung cấp đủ lượng oxy một cách liên tục và duy trì bùn hoạt tính ở trạng thái lơ lửng.

Bản chất của phương pháp là phân huỷ sinh học hiếu khí với cung cấp ôxy cưỡng bức và mật độ vi sinh vật được duy trì cao (2.000mg/L –5.000mg/L) do vậy tải trọng phân huỷ hữu cơ cao và cần ít mặt bằng cho hệ thống xử lý. Tuy nhiên hệ thống có nhược điểm là cần nhiều thiết bị và tiêu hao nhiều năng lượng.

Nồng độ oxy hoà tan trong nước ra khỏi bể lắng đợt 2 không được nhỏ hơn 2 mg/l. Tốc độ sử dụng oxy hoà tan trong bể bùn hoạt tính phụ thuộc vào:

·   • Tỷ số giữa lượng thức ăn (CHC có trong nước thải) ø lượng vi sinh vật: tỷ lệ F/M;

·   • Nhiệt độ;

·   • Tốc độ sinh trưởng và hoạt động sinh lý của vi sinh vật;

·   • Nồng độ sản phẩm độc tích tụ trong quá trình trao đổi chất;

·   • Lượng các chất cấu tạo tế bào;

·   • Hàm lượng oxy hoà tan.

Để thiết kế và vận hành hệ thống bùn hoạt tính hiếu khí một cách hiệu quả cần phải hiểu rõ vai trò quan trọng của quần thể vi sinh vật. Các vi sinh vật này sẽ phân huỷ các chất hữu cơ có trong nước thải và thu năng lượng để chuyển hoá thành tế bào mới, chỉ một phần chất hữu cơ bị oxy hoá hoàn toàn thành CO2, H2O, NO3-, SO42-, …

Một cách tổng quát, vi sinh vật tồn tại trong hệ thống bùn hoạt tính bao gồm nhiều loại vi khuẩn khác nhau cùng tồn tại. Yêu cầu chung khi vận hành hệ thống bùn hoạt tính hiếu khí là nước thải được đưa vào hệ thống cần có hàm lượng SS không vượt quá 150 mg/l, hàm lượng sản phẩm dầu mỏ không quá 25mg/l, pH = 6,5 – 8,5, nhiệt độ 6oC< toC< 37oC.

 

1.2 Công nghệ xử lý sinh học dạng mẻ (SBR)

 

Bể hoạt động gián đoạn là hệ thống xử lý nước thải với bùn hoạt tính theo kiểu làm đầy và xả cạn. Quá trình xảy ra trong bể SBR tương tự như trong bể bùn hoạt tính hoạt động liên tục chỉ có điều tất cả xảy ra trong cùng một bể và được thực hiện lần lượt theo các bước: (1) – Làm đầy; (2) – Phản ứng; (3) – Lắng; (4) – Xả cặn; (5) – Ngưng.

 

1.3 Công nghệ sinh học tăng trưởng dính bám

 

Bể Bùn Hoạt Tính Với Vi Sinh Vật Sinh Trưởng Dạng Dính Bám: Nguyên lý hoạt động của bể này tương tự như trường hợp vi sinh vật sinh trưởng dạng lơ lửng chỉ khác là vi sinh vật phát triển dính bám trên vật liệu tiếp xúc đặt trong bể.

Do có nhiều ưu điểm vượt trội về hiệu quả xử lý cũng như giảm chi phí đầu tư & vận hành nên hiện nay, việc áp dụng công nghệ sinh học tăng trưởng dính bám đang được ứng dụng khá rộng rãi. Năm 2010, GREE đã phát triển và nâng cấp cải tiến thành công công nghệ dính bám AFBR từ công nghệ FBR.

Bể lọc sinh học trong xử lý nước thải là một thiết bị phản ứng sinh học trong đó các vi sinh vật sinh trưởng cố định trên lớp vật liệu lọc. Bể lọc hiện đại bao gồm một lớp vật liệu dễ thấm nước với vi sinh vật dính kết trên đó. Nước thải đi qua lớp vật liệu này sẽ thấm hoặc nhỏ giọt trên đó.

Vật liệu lọc thường là đá dăm hoặc hoặc khối vật liệu lọc có hình thù khác nhau. Nếu vật liệu lọc là đá hoặc sỏi thì kích thước hạt dao động trong khoảng 0,5 -2,5 m, trung bình là 1,8 m. Bể lọc với vật liệu là đá dăm thường có dạng tròn. Nước thải được phân phối trên lớp vật liệu lọc nhờ bộ phận phân phối. Bể lọc với vật liệu lọc là chất dẻo có thể có dạng tròn, vuông, hoặc nhiều dạng khác với chiều cao biến đổi từ 4 – 12 m. Ba loại vật liệu bằng chất dẻo thường dùng là (1) vật liệu với dòng chảy thẳng đứng, (2) Vật liệu với dòng chảy ngang, (3) vật liệu đa dạng.

Chất hữu cơ sẽ bị phân huỷ bởi quần thể vi sinh vật dính kết trên lớp vật liệu lọc. Các chất hữu cơ có trong nước thải sẽ bị hấp phụ vào màng vi sinh vật dày 0,1 – 0,2 mm và bị phân huỷ bởi vi sinh vật hiếu khí. Khi vi sinh vật sinh trưởng và phát triển, bề dày lớp màng tăng lên, do đó, oxy đã bị tiêu thụ trước khi khuếch tán hết chiều dày lớp màng sinh vật. Như vậy, môi trường kị khí được hình thành ngay sát bề mặt vật liệu lọc.

Khi chiều dày lớp màng tăng lên, quá trình đồng hoá chất hữu cơ xảy ra trước khi chúng tiếp xúc với vi sinh vật gần bề mặt vật liệu lọc. Kết quả là vi sinh vật ở đây bị phân huỷ nội bào, không còn khả năng dính bám lên bề mặt vật liệu lọc và bị rửa trôi.

 

2. Công nghệ sinh học kỵ khí

 

Quá trình phân huỷ kỵ khí các chất hữu cơ là quá trình sinh hoá phức tạp tạo ra hàng trăm sản phẩm trung gian và phản ứng trung gian. Tuy nhiên, phương trình phản ứng sinh hoá trong điều kiện kị khí có thể biểu diễn đơn giản như sau:

 Chất hữu cơ             =====>              CH4  +  CO2  + H2   +  NH3  + H2S  +  tế bào mới

Một cách tổng quát, quá trình phân huỷ kỵ khí xảy ra theo 4 giai đoạn:

- Giai đoạn 1: Thuỷ phân, cắt mạch các hợp chất cao phân tử;

- Giai đoạn 2: Acid hoá;

- Giai đoạn 3: Acetate hoá;

- Giai đoạn 4: Methane hoá.

Các chất thải hữu cơ chứa nhiều chất hữu cơ cao phân tử như protein, chất béo, carbohydrates, celluloses, lignin,… trong giai đoạn thuỷ phân, sẽ được cắt mạch tạo thành những phân tử đơn giản hơn, dễ phân huỷ hơn. Các phản ứng thuỷ phân sẽ chuyển hoá protein thành amino acids, carbohydrates thành đường đơn, và chất béo thành các acid béo.

Trong giai đoạn acid hoá, các chất hữu cơ đơn giản lại được tiếp tục chuyển hoá thành acetic acid, H2 và CO2. Các acid béo dễ bay hơi chủ yếu là acetic acid, propionic acid và lactic acid. Bên cạnh đó, CO2 và H2O, methanol, các rượu đơn giản khác cũng được hình thành trong quá trình cắt mạch carbohydrates. Vi sinh vật chuyển hoá methane chỉ có thể phân huỷ một số loại cơ chất nhất định như CO2 + H2, formate, acetate, methanol, methylamines và CO. Các phương trình phản ứng xảy ra như sau:

4H2  +  CO2 => CH4   +  2H2O

4HCOOH  => CH4  + CO2  + 2H2O

CH3COOH  => CH4  +  CO2 

4CH3OH  => 3CH4  +  CO2  +  2H2O

4(CH3)3N  +  H2O  => 9CH4  +  3CO2  +  6H2O  +  4NH3

 Tuỳ theo trạng thái của bùn, có thể chia quá trình xử lý kỵ khí thành:

 ·  Quá trình xử lý kỵ khí với vi sinh vật sinh trưởng dạng lơ lửng như quá trình tiếp xúc kỵ khí, quá trình xử lý bùn kỵ khí với dòng nước đi từ dưới lên (UASB).

·  Quá trình xử lý kỵ khí với vi sinh vật sinh trưởng dạng dính bám như quá trình lọc kỵ khí.

 

2.1 Công nghệ bể xử lý kỵ khí

 

Trong quá trình xử lý nước thải bằng công nghệ kỵ khí, các chất hữu cơ trong nước thải được chuyển hoá thành mêtan và khí cacbonic, quá trình được thực hiện không có mặt của oxy. Hệ thống xử lý kỵ khí có thể là các ao kỵ khí hoặc các dạng khác nhau của bình phản ứng tải trọng cao.

Hồ kỵ khí được sử dụng để xử lý nước thải có nồng độ chất hữu cơ và hàm lượng cặn cao. Độ sâu hồ kỵ khí phải lớn 2,4 m (8 ft), có thể đạt đến 9,1 m với thời gian lưu nước dao động trong khoảng 20–50 ngày.

Quá trình ổn định nước thải trong hồ xảy dưới tác dụng kết hợp của quá trình kết tủa và quá trình chuyển hoá chất hữu cơ thành CO2, CH4, các khí khác, các acid hữu cơ và tế bào mới. Hiệu suất chuyển hoá BOD5 có thể đạt đến 70 – 80 %.

 

2.2 Công nghệ sinh học kỵ khí UASB

 

Đây là một trong những quá trình kị khí được ứng dụng rộng rãi nhất trên thế giới do 2 đặc điểm chính sau:

  • • Cả 3 quá trình, phân huỷ – lắng bùn – tách khí, được lắp đặt trong cùng một công trình;
  • • Tạo thành các loại bùn hạt có mật độ vi sinh vật rất cao và tốc độ lắng vượt xa so với bùn hoạt tính hiếu khí dạng lơ lửng.

Bên cạnh đó, quá trình xử lý sinh học kỵ khí sử dụng UASB còn có những ưu điểm so với quá trình bùn hoạt tính hiếu khí như:

  • • Ít tiêu tốn năng lượng vận hành;
  • • Ít bùn dư, nên giảm chi phí xử lý bùn;
  • • Bùn sinh ra dễ tách nước;
  • • Nhu cầu dinh dưỡng thấp nên giảm được chi phí bổ sung dinh dưỡng;
  • • Có khả năng thu hồi năng lượng từ khí methane;
  • • Có khả năng hoạt động theo mùa vì kỵ khí có thể phục hồi và hoạt động được sau một thời gian ngưng không nạp liệu.

Hệ thống UASB (Up-flow Anaerobic Slugle Blanked) được phát triển từ hệ thống xử lý kỵ khí đối với các loại nước thải có nồng độ các chất ô nhiễm hữu cơ cao. Trong những năm gần đây UASB đã được nghiên cứu chuyên sâu và triển khai áp dụng rộng rãi trên thế giới do các ưu điểm sau:

  • • Tải trọng phân huỷ hữu cơ cao do vậy mặt bằng yêu cầu cho hệ thống xử lý nhỏ.
  • • Nhu cầu tiêu thụ năng lượng thấp do không cần phải cung cấp oxy.
  • • Có khả năng thu hồi năng lượng.

(Nguồn gree)

Đối tác
bô kế hoạch
bộ tài chính
bộ khcn
bộ y tế
bộ nông nghiệp
bộ gtvt
bo xd
bo cong thuong
bộ tnmt